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ABSTRACT

/(7/6/ ¢o

A steady state solution is obtained to the equation for the
electron density in an isothermal one dimensional model of the
F-layer. The solution is an extension of a previous result of Bowhill
to include the effects of different ion and electron temperatures
and a more realistic electron production term. Simultaneously a
solution is obtained for the steady state electric field necessary to
maintain charge neutrality. This result is new and somewhat
surprising. Considerable attention is paid to the possible boundary
conditions for such a model and their effect on the solution. The

effect of a plane parallel approximation on the boundary conditions

is also included. #wﬂ&,L
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I. Introduction

In a recent paper Comstock [ 1965a ] has derived a set of
equations governing the diffusion of a three component (ions,
electrons, and neutrals) gas in a spherically symmetric, steady
state, isothermal planetary atmosphere, in the absence of a
magnetic field. The distinctive features of these equations are:

1) that they include a differential equation for the electric field
throughout the atmosphere; 2) that they are applicable to any
degree of ionization from a weakly ionized atmosphere to a totally
ionized atmosphere; and 3) that no a priori assumption has been
made concerning the validity of ambipolar diffusion. Some of the
properties of these equations have already been discussed

[ Comstock 1965 a, 1965b]. In this paper we specialize these
equations to the case where the neutral to ion density ratio is
between 10* and 1, which ratio is consistent with the major portion
of the F-layer. We then solve for the electric field and the ion
and electron velocities, subject to appropriate boundary conditions.
The solutions to this idealized model ionosphere should give some

insight into the physics of the earth's F-layer.

II. The Basic Equations

Our basic assumptions include the following. Each species,
k, is isothermal at its own temperature T, . The average drift
velocities q, are sufficiently small that the drift kinetic energy

is small compared to the potential energy due to gravity. Everywhere



except at the boundary of such an atmosphere, the gas is nearly
electrically neutral (see [Comstock, 1965a ] for a further
discussion of this point). I.astly, the electric field E is
derivable from a potential ¢. Then throughout the following

the subscripts i, e, n refer to ions, electrons and neutrals
(atomic oxygen) respectively. We introduce the following
definitions:

L = mass ratio = me/rni

kT
H = — . n

n&o
g, = the gravitational field at the reference height
H, = H/
a=T/T

e 'n

- 2

b= HegO/H
n, = the reference electron density
n.= the reference neutral density.

We then define our dimensionless variables by

Ne = rle/neo

M = nn/nno
z=r/H

@ = e¢/an

Y = é 2 G(r)

In the above G(r) is the gravitational potential due to the earth's
gravitational field. We also write
n
— = the ion-neutral collision frequency
in
g(z) = the (known) ionization rate

h(z) = the (known) recombination rate.




Then the basic equations governing our atmosphere become

(Comstock [1965a ] )
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The production term g(z) is taken from Nisbet [ 1963 ].

—

|

(1)

(2)

(3)

(4)

(5)

It is

a model devised so as to include the depletion of radiation with depth

in a crude, but useable form. If the radiation intensity per unit

area on a large sphere of radius z  is g(zo) then

~

X

g(z);< z 2

g(zo)zoz (-Zo rB ﬂdx
—— <1 -k sec e)z n expt;(a-l)J——;— , g(z) >0

0 , glz) <0



(z )z °
&50_ {qm - P, ©XP [B—(%—'—Q ]} , g(2)> 0

0 , g(z)< 0

The recombination term h{z) n, is taken as a linear
function of the electron density. The function h(z) is proportional
to the (known) density of molecular oxygen, assumed in static
equilibrium, according to the well known charge exchange
recombination mechanism in the F-layer.

It is the solution to this set of equations, (1)-(5), which

we wish to discuss here.

III. The Particle Densities

We see that we can solve the equations (1) and (3) for the
electron and neutral densities independently of the electric field.
The equation for the neutral density is the simplest, and thus shall
be so%ved first.

Considering first the right hand side of equation (3) and
using the data typical of the ionosphere, we see that the ionization
and recombination terms are of the same order of magnitude, but
that each is of the order of 10”3 . So we shall neglect the right
hand side of (3). Then the solution of the neutral density
distribution is the familiar barotropic solution in spherical

coordinates

B B B
n = exXp z—=exp|:—z— - Z ] , (6)
(o]

where A and B are arbitrary constants of integration,




Then equations (1) and (2) become

dn

2 e , 1 B 1 B 2
Vit g frm t Y St () e

2
=-an glz)+pf h(z)n, n (7)

n

2

n n
d e Ba d n
Vg =-T In(=2) (—=2—+ a == lnn ) + ora = g(z)
dz T (1+a)z? dz ¢ Ne
- B1 ah (z)n (8)

If the recombination coefficient P; and the ionization coefficient a
were small enough to be ignored, then the electron equation (7)
would be a very simple equation to solve. It is easily seen that

the solution would be

ne=AxeXP(E—)+AzeXP((1%;-Z)- (9)

That is, the purely diffusive motion of the ion-electron gas consists
of a linear combination of two diffusive terms, one with an effective
molecular weight of the neutrals and the second with an effective
molecular weight of the static neutral plasma. We note that, as

long as I_A'z‘|> lA 1' , then at sufficiently great heights, the solution (9)
becomes dominated by the second term. That is, the statement that
at sufficiently great heights the ion-electron plasma is essentially

in diffusive equilibrium does not determine either of the two constants

in (9). We note also that the two solutions which make up equation



(9) are monotonic functions of height. Thus to chose either
coefficient zero is to insist that such a solution admit no peak.

We make these comments on this obviously unrealistic
solution at this point because it turns out that many of the same
features will appear in the solution to the full equation (7). We
also note that from equations (6) and (9) we can suspect (and will
later confirm) that the atmosphere we wish to describe is, of
necessity, of finite thickness. If the atmosphere is to have a
peak in the electron density, and to approach diffusive equilibrium
at great heights, then at the lower end the electron density must
drop below 10™* times the neutral density. On the other hand,
the electron density decreases, at great heights, more slowly
than the neutral, and so will eventually exceed the neutral density.
Thus at both the upper and lower extremes we violate the bounds
on the density ratios under which assumption we derived our basic
equations. Thus equations {1)-(5) can be used only to discuss
atmospheres of finite thickness.

We now proceed to try to solve the equations (1), (2),

(4), (5). Unfortunately for analytical purposes, the recombination
and ionization terms in (7) cannot be ignored. Equation (7) is then
a variable coefficient, linear differential equation, whose solution
is not known in terms of standard functions. However, we can take
advantage of the fact that our model atmosphere is necessarily a
finite atmosphere, of relatively thin nature. The major difficulty
in solving (7) and (8) is the variable coefficient nature of the
equation. We thus expand the coefficients in a power series about

some middle point in the atmosphere. It is convenient to chose




this point as the point of maximum ionization rate. This is
essentially equivalent to considering a plane-parallel,
stratified atmosphere. In doing such an expansion, we must
be careful that we do not misinterpret our boundary conditions.
In particular, to apply boundary conditions at + o will probably
lead to false conclusions, and certainly is not physically
meaningful.

If we let

{ =z-z (10)

and expand the coefficients, neglecting terms of the order of

(?;/zo) 2, then our equations reduce to

dZ;'qe 1 e 1 _ 2
por Hpg + Dgr Hpgg - Pih(t) exp (-8))n, = - eg(l) exp(-2L),
(11)
I =ap Wnln, exp QI ZT +4¢ Inm, +a1g(é)e—"%2—4l
- B1 h(L) exp (-1) (12)
where
g(t) = glz )1-p_exp [-(e-1)L] ) (13)
h(z ) = exp (-a,1). (14)

In the above a; is the reciprocal ratio of the scale height of the
molecular constituent which is involved in the recombination
mechanism to the scale height of the neutral constituent and

sec ©/(a-1). Equation (11) is similar to one studied by

pm: knHO



Bowhill[1962] and others. With the substitution
x =exp -(ay + )¢ (15)

we can reduce equation (11) to one whose solution is readily expressible
in terms of Hankel functions of imaginary argument and the associated

Lommel functions (See Bowhill [1962 ]).

, d?'ne dn, . 1,
x + (1-28)x o— + (aZ -~vI)n, -P2xm
dx 2
{ 2/(a1+1) (e+1)/(ar+ 1)
:-ozzl—x - me ] Iy (16)
where
a, = 2+ a
2 2(a+1) (1+a;)
v = a
T (a+1) (I+aq)
(17)
Pz = — B
(a1 + 1)°
ap= —21 J
(a1 + 1)2
The solution to the homogeneous portion of (16) is
= A ><a‘21v(z~/pzx)4“tx,2 xazl_v (2 N Bax). (18)

Since very small x corresponds to large z, the Taylor series expansion

of (18) enables us to determine that the second solution I-v corresponds




to the exponential solution
A, X221 LN Bx) ~ A, exp (B/(l+a)z), (19)

while the first solution Iv corresponds to the neutral solution (6). The
essential details of this calculation are in Bowhill [1962]. We note

that the homogeneous portion of equation (16) includes the recombination
term. Now the condition of strict diffusive equilibrium at infinity

would correspond to choosing A; = 0. Since equation (18) is the complete
solution to (16) when the ionization rate is zero, say at night, then we
see that no peak can exist, since the two solutions in (18) are monotonic
functions of {. Thus the choice A; = 0 for one boundary condition is

equivalent to placing the entire burden of maintaining a peak in the

electron density on the ionizing radiation. Thus the choice A; = 0 is
inconsistent with the observed phenomenon that a peak in ion density
exists at night in the absence of ionizing radiation. We note also that,
as in the previous models, the condition that the solution tend
asymptotically toward diffusive equilibrium is automatically satisfied
for any non-zero choice of the arbitrary coefficients since it is

equivalent to

lim —— =0 = lim x*” . (20)

Thus these considerations do not give a physically reasonable definitive
choice for the arbitrary coefficients in (18). Our only conclusion is that

A; = 0 is not permissible.
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At the other end, by considering the asymptotic expansion for
the Hankel functions for large { we can determine the nature of the
solution (18) near the bottom of our atmosphere. But the functions
£v(y) diverge exponentially for large values of their arguments, and
since y itself is an exponential, then the solution (18) has the

asymptotic value

il+a1k§ ‘
n, . =exp (2 NB, exp - ) {F(é)} (21)

ec 2

where F({ ) is a non-vanishing function of {. But Nec is the solution

to the electron density distribution in the absence of ionizing radiation
and including the effects of recombination. To have an exponentially
increasing solution in the presence of a recombination mechanism which
itself is becoming more and more effective as the altitude decreases

is not physically reasonable. Thus the only solution to (18) which gives
an acceptable solution below the region of maximum ionization rate is

Ay = A,, so that the solution (18) can be written

Mo = AlvaKv (2NB2x ). (22)

This solution does not fit the condition of strict diffusive equilibrium
above the peak. Thus there is a second argument that strict diffusive
equilibrium cannot be a realistic boundary condition, contrary to the
assumptions of Bowhill and others. We note alsc that equation (22) has
a peak in the interior, independent of the fact that there is no ionizing
radiation. The recombination alone is sufficient to create a peak in

the ion density distribution. (Of course, to maintain a steady state,
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non-zero electron density distribution with only recombination present,
there must be a flux of electrons and ions across one of the boundaries.
And we shall see later that there is a flux across the outer boundary.)
Reverting to the inhomogeneous equation (16) the full solution is
expressible in terms of Hankel functions and associated Lommel
functions (see Watson [1952]). A particular solution N; of (16) can be

written as

N

i 20 S, WV -asp S us, o

=as (s, (y) + by (- (2VBx) + by (T, (2 NBzx) )

-asp (s, () + bs (-v)I_ (@VBx ) + bs(I, (VB %) ),
(23)
where
a; = ~4a; (4B2) Y exp (y,mi)
Hj = Z(YJ) -1
(uj+V-1) | (uj-V-l) I
. , M.tV .
b.(v) = -4(Yj_l) z Z cos 7——3 emv/Z
J sin T v

_ 3a42
Y4 T Z(T¥a)(I+a)

_ 2aoa+l)ta
Y5 = (T+a)(T+ay)

y = -2i NBax
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Using asymptotic expansions of the terms in (23) we will be
able to identify the behavior of this particular solution above and
below the point { = 0. The asymptotic expansion for the functions

S

" v(y) (see Watson [1952 ]) gives the first term of the series as

ngw

Ny~ T 18%P [(a1-1)L] - P, €XP [(a1-a)t ] } . (24)

This expansion is asymptotic for { — - «, thatis, below the peak in
the ionization rate. The particular solution (24) tends to zero as
long as the effective molecular weight of the molecular species
involved in the recombination is greater than the effective molecular
weight of the ionizable constituent, which condition holds for the
ionosphere. We note that the particular solution (24) has only an
exponential approach to zero, while the complementary solution (22)
goes as exp [exp ¢{]. Thus the particular solution will dominate

the solution to (16) sufficiently far below the ionization rate peak.
We also note that, because of the nature of our expression for the
ionizing radiation, the expression (24) will become negative at the
point where

= exp [ @-1)L]. (25)

Pm

Thus equation (25) can be used ot obtain a crude approximation to the
location of the bottom of the ionosphere., Typical values for the terms
involved give a value of { = - 1.7.

Thus the ion-electron density drops to zero in less than 2 scale
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heights (~ 100 km) below the point of peak ionization rate. This
is the order of magnitude of answer which is observed. This answer
is expected to be only a crude approximation for two reasons. First,
the expression for the ionization term is itself a crude model.
Secondly, the value -1.7 is obtained by using the only first term of
an asymptotic expansion, valid for { — -®., It is of interest to
check whether only one term is sufficient.

A sufficient condition that the asymptotic representation is

given to a reasonable degree of accuracy by the first term alone is

that the second term in the asymptotic series by negligible in comparison

with the first. This requirement can be reduced to

al a
By @ ’}

-(a +1)>> .

In La—l—éz(ill— (ar -le-1] - 2 )} (26)
Using typical values for the F-layer, we see that this inequality holds
for values of { slightly less than 1. Thus the asymptotic expression
is a valid representation for (23) at distances of only one scale height
below the peak in the ionizing radiation.

To obtain the behavior of the particular sclution (23) above
the peak we obtain the Taylor series solution for the functions

5 v (y), using Watson [1952 Jagain. We see that

p_ exp[-la+1)L]
Nlmazgz’o{exp[a-ZE] _ . m - ) }+ terms in ngiO(Y) . (27)
14+ ——

a+1l o ot +a

The condition for neglecting the next term in the Taylor series is
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given by

y2 << (p+ 3)% -0, (28)

which can be written

1nt 52 5 } ]
(2+a)(2+a+ —)
(a1 + 1)L >>¢ l ad . (29)

In B
L [ 1 1 a ]
(a4 1+a))(a+ 1+a +m)

P,

For the values typical of the ionosphere these inequalities hold again
for £ = 1, and so the Taylor series expression for the particular
solution is valid everywhere more than one scale height above the
peak of the ionizing radiation. We see from (27) that the particular
solution N; consists of a term which is essentially proportional to
the ionization term plus two diffusive terms. The first represents
the contribution to the electron density of the ionizing radiation,
without the action of diffusion, and the second two terms represent
the redistribution of the electrons by the diffusive and recombination
mechanisms. We note that the recombination coefficient $; influences
the particular solution above the peak only indirectly, in that none of
the three terms in the expansion (27) is directly proportional to the
recombination term, in contrast to below the peak. However, it
would be incorrect to conclude from this, as Bowhill [1962] has done,
that the recombination coefficient does not effect the formation of

the electron peak (which is above the ionization peak), since, as we

have seen, a peak exists in the complementary solution for the electron
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density in the absence of ionizing radiation, due to the recombination .
The recombination coefficient enters indirectly in the coefficients
of the second two, diffusive, terms in (27).

Thus the particular solution (23) obeys the one boundary
condition we have applied, namely that the electron density vanish
sufficiently far below the ionization peak. Thus the solution to (11)

is given by the sum of (23) and (22), that is

e = A1 x K (2NFX ) + Ny (x). (30)

The fact that the atmosphere is finite and thus the lower boundary is
not at { = - © does not alter this lower boundary condition since all
other solutions to (11) involve Iv (2 N/?-z_z?) which is exponentially
growing. This is a physically impossible situation in the presence
of both a decreasing ionization and an increasing recombination.
Thus the solution to the electron density distribution is

reduced to determining the constant Aj in (30). To do so we must
decide on another boundary condition. Unfortunately there is no
unequivocal choice for this condition. Many authors l:eg: Bowhill

[1962 ]:l chose diffusive equilibrium. Others [Nisbet [ 1963 ]]

chose a given flux at a specified height. In this paper we decide

to defer the question until we have investigated the solution for the

electric field and those for the flow velocities.

IV. The Electric Field and the Flow Velocities

By eliminating the ionization and recombination terms
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between equations (7) and (8) we can obtain

Vip=-a Vzlnne.

This has the solution

4 A

E =-a Iz 1n1'|e+

72
and the diffusion velocities can be written

_ d dn d 1 2ubH
g, = -[{E + a a—z—lnne}Z_p- + {LIJ-E t 3z lnn‘e}j .lﬁ_nn -

in

q = - {¢ + (1+a) S 1me} ZubH

n .
n in

where d\N is the ratio of ion-neutral to ion-electron collision

frequencies. Thus

_ bH A
=q, -

e i n /o .
e/ ie z?

Then from (32) the condition of strict diffusive equilibrium at

infinity means that A = 0, and thus from (35) the ion and electron

(31)

(32)

(33)

(34)

(35)

velocities would be equal throughout. Equations (33) and (34) show

that there is a downward flux of particles from the top of the

atmosphere. This can be seen by noting that for static equilibrium,

or for strict diffusive equilibrium,
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T 1M, = ll+a)¢
and

-a
Esma ¥

so that for an ionosphere with a peak (where c;iz 1n11e vanishes )
the parentheses in (34) and in (33) are always positive. -

We now consider equations (32)-(35) in more detail. If we
take as a condition that there be no net current at any one point,

then there is no current anywhere, and thus, in (35) and (32),

A = 0. (36)

(37)

Thus, at the peak in electron density, the electric field vanishes;

below the peak the electric field changes sign, and actually increases
the effective gravitational field on the ions (instead of reducing it to
half the field as a simple, isothermal, static analysis gives). Crudely,
equation (37) says that the electric field, in magnitude, is equal to

"a' times the slope of the electron density profile (measured in neutral
scale heights). Thus the electric field, below the electron density

peak, can be several times the gravitational field.
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We note also thatthereis no inherent requirement in this
formulation that A be chosen zero. That is, there is no internal
inconsistency in requiring electrical neutrality and still not requiring
ambipolar diffusion. This topic has been the subject of several recent
papers (Chandra [1964 ], Kendall [1964 ] ). In a recent paper
Comstock [ 1965b ] has pointed out that in the region of low ionization,
just below the region under consideration, a vertical current may be
necessary to maintain a steady state. If this were so, then by
continuity a current would have to exist in this region also. Thus
the constant A in (35) would be determined by this current. However,
the choice of a non-zero A does not alter any of our above conclusions
except in the actual location of the zero electric field. [ There would,
of course, have to be some mechanism outside the region under
consideration to provide a closed path for the return of such a current. |
QOutside of this consideration there is then no compelling physical
boundary condition which forces any one choice for the arbitrary
constant A in the solution (32) for the electric field.

Turning to the flow velocities, equation (34) shows that the
condition of diffusive equilibrium for the electron density is equivalent
to zero ion velocity. Thus the ion flux at any one point is the
physically logical condition for dete rmining the other constant A;
in the electron density solution (30). A common choice is no ion

flux at infinity,

qi (o) = 0, (38)
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This would require that the electron density distribution be in strict
diffusive equilibrium at infinity. However, since our solution for the
electron density distribution is in terms of a plane parallel coordinate
system, a great deal of care must be taken in applying this condition.
We proceed as follows: using the Taylor series expansion for our

answer, valid some distance above the region { = 0, we obtain

v
Ny ~[-A1 +aebe(M - p_asbs (v) ] (Bl exp [1]

oy - _ (B2 -t
+ [Al + agba(-v) Pma5b5( V)] -v) €Xp (l+a)

p_exp (- [a+ 1]¢)
—a,g_ {exp(-zaé) _ m - } (39)
AR oy alet oo )
This can be written
n = exp [-L/(1+a) ] {1 + cz exp [-al/(1+a)]
er exp [-(142a)L /(14a)] + e exp [- LERLIRR L g

For sufficiently large, all of the terms in the bracket, except cy,

vanish, regardless of the values of ¢c;, c3 or cs4 . However, the

fact that all the solutions of (11) are of the form exp (-ki) is a
consequence of the plane-parallel approximation. The solution to
the simplified equations in spherical coordinates are of the form
exp (k/r), which form does not vanish for large r. Thus we assume
that the solution to the correct problem, in spherical coordinates,

would not be in terms of vanishing exponentials.
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The boundary condition of strict diffusive equilibrium is

given normally by the equation

e _ -y »
7 dr T T¥a (41)

Because of this vanishing of the exponential solutions the equation (41)
is satisfied for any choice of A; in (39). Thus, because of our
approximation to plane-parallel coordinates, another way to express
the boundary condition must be found. Bowhill [1962 ] , Yonezawa
[1958 ] and others have interpreted it to mean that the coefficient
of exp (-{) shduld vanish. This is equivalent to requiring that at
great heights any particles created by the ionizing radiation can
diffuse only with the effective molecular weight of the ion-electron
plasma. The author sees no physical justification for this distinction.
A more realistic requirement is that the constant A; be
chosen so that all terms in equation (39) vanish, except the term
exp [-¢/1+a)], at the point where the ion velocity is to vanish.
This really cannot be the point { = ©, since our plane parallel
approximation must fail for large values of {. Let C,m be this point;]

then

a

exp (L) p_exp(-al ) }
1+a

A= -agbe(p) + p_asbs (v) +a2f v |-F5z-v{
)

1+ ol o +

a
1+a

(42)

is the condition that the ion flux vanish at the point Qm.
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Then the solution for the electron density distribution is

-ne = Xa'2 {-Al KV (2 \]ﬁz—x ) + 345 l~14'," (Y) - pma5§ s ,V(Y) } °

(43)
The ion velocity everywhere is then given by equation (34) and
is downward throughout the atmosphere. The electron velocity cannot
be determined until the constant A is determined. Until more information
is known about the electric field in the atmosphere, we have no:way

to dete rmine this constant.

V. Conclusions

The electron density distribution obtained here agrees in form
with those obtained by other authors, (see Bowhill [1962] , and
references therein). By including a more realistic electron production
term the fit of this model to the photoequilibrium curve at low altitudes
is somewhat better. (see Bowhill[1962], figure 2). Itis seen that the
critical condition, from a theoretical point of view, is the boundary
condition at the top of the ionosphere. Fortunately, from a numerical
point of view, the production and loss terms at great heights are
sufficiently small that the numerical value of the solution is not sensitive
to whether diffusive equilibrium is taken to mean that the plasma
diffuses strictly at the plasma ''mean molecular' weight, or whether, as
most people take it, the plasma has no diffusion at the neutral molecular

weight.



-22 - .

The analytical form of the electron density in terms of the
Hankel functions of imaginary argument shows why there has been
difficulty trying to integrate the diffusion equations numerically down-
ward from the top of the ionosphere. Rishbeth and Barron [ 1960 ]
found a change of 1 partin 10™* in their initial conditions at the top
would cause an exponential divergence in the solution at the bottom.
Since the Hankel functions in the analytical solution here are basically
exponential functions of their arguments below the electron production
peak, this is to be expected.

It is seen that the electron density solution is determined
by the ion flux at great height, independent of the electron flux.

Thus a vertical current is compatible with, and has no first order
effect on, the usually obtained electron density. Any current which
exists is seen to be directly related to the electric field in the
ionosphere. The presence, or absence, of such a current cannot
be settled within the framework of the present formulation, but
must be taken as a boundary condition.

Even in the absence of any current the electric field in the
ionosphere required to maintain charge neutrality is quite different
from the usual static approximation. The electric field is seen to
be as much as 3-4 times the gravitational field below the F-layer
peak and of the opposite sign from the usual static approximation.

Since the electric field in the F-layer is influential in
determining the loss of high energy particles trapped on the

magnetosphere, further exploration of this point should be of interest.
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